ECO138: Practice Questions for Chapter 14

Section 14.1.

1. Use Lagrange's method to find the only possible solution to the problem:
$\max \mathrm{xy}$ subject to $\mathrm{x}+3 \mathrm{y}=23$.
2. Use the Lagrange's method to solve the problem

$$
\min -40 Q_{1}+Q_{1}^{2}-2 Q_{1} Q_{2}-20 Q_{2}+Q_{2}^{2} \quad \text { subject to } Q_{1}+Q_{2}=15
$$

3. Solve the following problems.
(a) $\max 10 x^{1 / 2} y^{1 / 3} \quad$ subject to $2 x+4 y=m$
(b) $\max x^{1 / 2} y^{1 / 2} \quad$ subject to $50000 x+0.08 y=1000000$
(c) $\max 12 x \sqrt{y}$ subject to $3 x+4 y=12$
4. (a) $\min f(x, y)=x^{2}+y^{2}$ subject to $g(x, y)=x+2 y=4$
(b) $\min f(x, y)=x^{2}+2 y^{2} \quad$ subject to $g(x, y)=x+y=12$
(c) $\min f(x, y)=x^{2}+3 x y+y^{2} \quad$ subject to $g(x, y)=x+y=100$
5. A person has utility function

$$
u(x, y)=100 x y+x+2 y
$$

Suppose that the price per unit of x is $\$ 2$, and that the price per unit of y is $\$ 4$. The person receives $\$ 1000$ that all has to be spent on the two commodities x and y. Solve the utility maximization problem.
8. A firm produces and sells two commodities. By selling x tons of the first commodity the firm gets a price per ton given by $p=96-4 x$. By selling y tons of the other commodity the price per ton is given by $\mathrm{q}=84-2 \mathrm{y}$. The cost of producing and selling x tons of the first commodity and y tons of the second is given by $C(x, y)=2 x^{2}+2 x y+y^{2}$. Compute the first order partial derivatives of P , and find its only stationary point.

Section 14.2

2. Solve the problem minimixe $r K+x L$ subject to $\sqrt{K}+L=Q$, assuming that $Q>$ $\frac{w}{2 r}$, where r, w and Q are positive constants.
3. (a) Solve the utility maximization problem

$$
\max U(x, y)=\sqrt{x}+y, \text { subject to } x+4 y=100
$$

using the Lagrange method, i.e. find the quantities demanded of the two goods.
(b) Suppose income increases from 100 to 101 . What is the exact increase in the optimal value of $\mathrm{U}(\mathrm{x}, \mathrm{y})$? Compare with the value found in (a) for the Lagrange multiplier.
(c) Suppose we change the budget constraint to $\mathrm{px}+\mathrm{qy}=\mathrm{m}$, but keep the same utility function.

Derive the quantities demanded of the two goods if $m>\frac{q^{2}}{4 p}$.

Section 14.3.

1. (a) $\max (\min) 3 x y$ subject to $x^{2}+y^{2}=8$.
(b) $\max (\min) x+y$ subject to $x^{2}+3 x y+3 y^{2}=3$.
2. Solve the problem
$\max f(x, y)=24 x-x^{2}+16 y-2 y^{2}$ subject to $g(x, y)=x^{2}+2 y^{2}=44$
What is the approximate change in the optimal value of $f(x, y)$ if 44 is changed to 45 ?

Section 14.5

2. Consider the utility maximizing problem $m a x \ln x+\ln y$ subject to $p x+q y=m$.

Section 14.6

1. Consider the problem $\min x^{2}+y^{2}+z^{2}$ subject to $x+y+z=1$.

Write down the Lagrangian for this problem, and find the only point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) that satisfies the necessary conditions.
2. Solve the utility maximizing problem

$$
\max 10 x^{1 / 2} y^{1 / 3} z^{1 / 4} \text { subject to } 4 x+3 y+6 z=390
$$

6. Solve the problem:
$\max (\min) \mathrm{x}+\mathrm{y}$ subject to $\left\{\begin{array}{c}x^{2}+2 y^{2}+z^{2}=1 \\ x+y+z=1\end{array}\right.$

Section 14.7

1. (a) Assuming $0 \leq a<\frac{m}{p}$, find the solution ($\mathrm{x}^{*}, \mathrm{y}^{*}$) to the utility maximization problem

$$
\max x+\text { alny } \quad \text { subject to } p x+q y=m
$$

(b) Find the indirect utility function $\mathrm{U}^{*}(\mathrm{p}, \mathrm{q}, \mathrm{m}, \mathrm{a})=\mathrm{x}^{*}+\ln \mathrm{y}^{*}$, and compute its partial derivatives with respect to $\mathrm{p}, \mathrm{q}, \mathrm{m}$ and a . Verity the envelope theorem.
2. Solve the problem $\min x+4 y+3 z$ subject to $x^{2}+2 y^{2}+\frac{1}{3} z^{2}=b$. (Suppose that $\mathrm{b}>0$ and take it for granted that the problem has a solution.)
4. (a) Solve the problem

$$
\max (\min) f(x, y, z)=x^{2}+y^{2}+z \text { subject to } g(x, y, z)=x^{2}+2 y^{2}+4 z^{2}=1
$$

(b) Suppose the constraint is changed to $x^{2}+2 y^{2}+4 z^{2}=1.02$. What is the approximate change in the maximum value of $f(x, y, z)$?
5. Solve min $\mathrm{C}=\mathrm{rK}+\mathrm{wL}$ subject to $\mathrm{F}(\mathrm{K}, \mathrm{L})=K^{1 / 2} L^{1 / 4}$. Find explicit expressions for $\mathrm{K}^{*}, \mathrm{~L}^{*}$, C^{*} and λ.

Section 14.8

2. (a) Write down the Kuhn Tucker conditions for the problem
$\max x^{2}+2 y^{2}-x$ subject to $x^{2}+y^{2} \leq 1$.
(b) Find all pairs (x, y) that satisfy all the necessary conditions. (There are five candidates.) Find the solution to the problem.
3. Consider the problem
$\max f(x, y)=2-(x-1)^{2}-e^{y^{2}}$ subject to $x^{2}+y^{2} \leq a$, where a is a positive constant.
(a) Write down the Kuhn-Tucker conditions for the solution of the problem. Find the only solution candidate. (You will need to distinguish between the cases $\mathrm{a} \in(0,1)$ and $\mathrm{a} \geq 1$.)
(b) The optimal value of $f(x, y)$ will depend on a. The resulting function $f^{*}(a)$ is called the value function for the problem. Verify that $d f(a) / d a=\lambda$.
